Aura (OMI) METOP (GOME-2) ENVISAT (SCIAMACHY) Image Credit: NASA & ESA ESR-2 (GOME) # Sensitivity to precursor emissions over U.S. urban area: the view from space Xiaomeng Jin (xjin@ldeo.columbia.edu) Lamont-Doherty Earth Observatory of Columbia University Aura Science Team Meeting 2019 August 28, 2019 **Acknowledgement:** Arlene Fiore (LDEO), Bryan Duncan (NASA), Lok Lamsal (NASA), Folkert Boersma (KNMI), Isabelle De Smedt (BIRA-ISAB) #### Using satellite observations of NO₂ and HCHO to diagnose O₃-NO_x-VOC chemistry # Connecting satellite-based HCHO/NO₂ with O₃ exceedance (> 70 ppbv) probability - OMI HCHO/NO₂ < 2.0: O₃ exceedance is **more** likely to occur with NO_x reduction (NO_x-saturated). - OMI HCHO/NO₂ > 4.0: O₃ exceedance is **less** likely to occur with NO_x reduction (NO_x-limited). - Between 2.0 ~ 4.0: O₃ production regime is uncertain. Ground-based O₃: EPA AQS network OMI NO₂ and HCHO: gridded QA4ECV daily products ## Analyzing the evolution of surface O₃ sensitivity using harmonized multi-satellite HCHO/NO₂ Harmonization of monthly multi-satellite HCHO and NO₂: - Consistent retrieval algorithm (QA4ECV). - 2. HCHO and NO₂: Adjust the overpass time difference by calculating the difference between SCIAMACHY and OMI during overlap period at a coarse resolution. - 3. NO₂: Correct resolution difference by applying a resolution correction factor derived from OMI (Geddes et al., 2017), but allow the correction factor to vary with time. #### Large decline in NO₂ observed from satellite and ground-based observations Summertime mean satellite-based NO₂ vs. ground-based surface NO_x Ground-based NOx: EPA AQS network, hourly data sampled at OMI overpass time #### Satellite retrieved summertime mean HCHO from 1996 to 2016 ## Ground-based observations suggest decreasing trends of reactivity-weighed VOCs over urban areas VOC Reactivity: Sum of measured VOCs weighted by reaction rate with OH. ~ Daily VOC measurements collected from PAMS sites. Jin et al., in prep ## Space-based HCHO underestimate the decreasing trends of reactivity-weighed VOCs ## Satellites show shrinking areal extent of NO_x-saturated O₃ production chemistry as NO_x emissions decline 1996 - 2000 (Summer) 2013 - 2016 (Summer) ### Peak ozone moving towards city center Jin et al., in prep #### Reversal of O₃ weekend effect as a result of O₃ production regime transition ## Summary - Satellite-observed HCHO/NO₂ can diagnose the non-linear O₃-NO_x-VOC chemistry, but subject to uncertainties. - Two-decade multi-satellite observations show large changes of O₃ production regimes over U.S. urban areas. - The new generation TROPOMI data have promising value to detect the short-term variability of O₃ chemistry.